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Abatract 

We have computed the h&city amplitudes for the reactions yN + TN (N = p, n) 
at large momentum transfer to lowest order in perturbative QCD. Our cross section for 
proton Compton scattering shows good qualitative agreement with experimental data, 
when the proton is modeled by the Chernyak-Oglobin-Zhitnitsky, King-Sachrajda or 
Gari-Stefanis distribution amplitude. Discrepancies between our results and previous 
calculations seem to be due to different treatments of numerical integration around 
singularities. 
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1 Introduction 

Exclusive processes in photon-ha&on collisions offer a wide variety of tests of perturbative QCD. 
The amplitude for a wide-angle exclusive process is given by the convolution of a distribution amp& 
tude summarizing soft, hadronic physics and a hard-scattering amplitude of collinear, constituent 
partons [l]. The distribution amplitude cannot be computed in perturbation theory, but, as with 
the structure function in deep inelastic scattering, it could be measured in lower-energy reactions. 
Application of the perturbative renormalization group and the convolution with parton scattering 
amplitudes yield predictions for new processes or at higher energies. No distribution amplitude has 
been measured yet, for two reasons. First, exclusive cross sections are harder to measure because 
the cross sections are smaller and the backgrounds are higher. Second, the theoretical calculations 
are demanding because extremely many Feynman diagrams appear, even in leading order. Con- 
sequently, for most exclusive processes higher order theoretical calculations, which are necessary 
before the distribution amplitude could be measured, have not even been contemplated. 

In the long run, only computers will have the patience to work out the amplitudes, and the major 
challenge for the last few years has been to develop a reliable combination of symbolic and numerical 
algorithms. Farrar and collaborators [z] have developed several codes for symbolic evaluation of 
the diagrams contributing to the hard-scattering amplitude. They yield the same results, and 
they agree with all hard-scattering amplitudes that have been calculated by hand. Hence, one 
can be co&dent that these symbolic programs are correct for tree diagrams. However, one must 
also be certain that the subsequent numerical steps involved are robust. The convolution of the 
hard-scattering amplitude and the distribution amplitude is a multi-dimensional integral over the 
momentumfmctions of the valence partons. This integral is analogous to a loop integral, except that 
it uses the distribution amplitude to describe the exchange of any and all soft gluons, rather than the 
propagator to describe the exchange of a single hard particle. In particular, integrable singularities 
can arise in certain regions of momentum-fraction space, when internal lines of Feynman diagrams 
go on mass shell, producing an imaginary part in the amplitude. 

In this paper we compute the cross sections for nucleon Compton scattering to lowest order in 
perturbative QCD. This is the simplest experimentally accessible process in which the momentum- 
fraction integrals yield an imaginary part. We use the same methods [z] as the symbolic computer 
programs to evaluate the Feynman diagrams, but we do so by hand. Because the singularities in 
the momentum-fraction integrals can ambush numerical integration routines, we approach them 
with great caution. Wherever possible, we integrate singular integrands analytically, a step that 
a computer-based approach could perform symbolically. The re maining one- and two-dimensional 
integrals are done using VEGAS [3]; for diagrams in which two and those in which three internal 
lines can go on shell, poles remain in the domain of numerical integration. We use the technique 
developed in Ref. [4] to evaluate the principal parts of these integrals. (Reference [4] computed 
meson pair production in two-photon collisions to one loop, which contains ultraviolet, infrared, 
collinear and principal part singularities in the loop and momentum-fraction integrals.) In a nut- 
shell, a change of variables maps the twin peaks onto each other in such a way that they cancel 
locally, rather than globally. 

For proton Compton scattering there is wide-angle data [5] with center-of-mass energy-squared 
4.6 GeVs < s < 12.1 GeV’, where perturbative QCD ought to be applicable. There are other 
data [6, 7, 81, but those experiments concentrated on lower energies and smaller angles, where the 
formalism of Ref. [l] does not apply. Below we shall compare our results for the unpolarized cross 
section to the Tufts-MIT-Cornell experiment [5]. The predictions for polarized cross sections and 
phase of the amplitude can be verified in ep collisions [9], because Compton scattering with a virtual 
incident photon also contributes to the reaction eN - eNy. When the electron is deflected through 
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Figure 1: The processes (a) -yN -t yN and (b, e, d) eN + eNy. The blob labeled C denotes the 
Compton amplitude, and the one labeled F the electromagnetic form factor. 



a small angle, the exchanged photon is almost parallel to it and nearly real, and the Compton 
sub-process dominates. It may be possible [9] to determine the phase of the Compton ampfitu&, 
as a function of the center-of-mass scattering angle, by extracting the interference of the Compton 
scattering with the sub-processes depicted in Figs. l(c) and (d). This would be interesting, because 
the non-zero phase is a non-trivial prediction of perturbative QCD. Moreover, the phase information 
may provide more stringent constraints on the nucleon distribution amplitude than the cross section 
alone. 

Instead of using data to determine the distribution amplitude, it should be possible to use a 
non-perturbative QCD calculation. Quenched lattice QCD has 80 far [lo] only produced the first 
two moments of the nucleon distribution amplitude. There are several calculations of the fat aiz 
momenta using QCD sun rules [ll, 12,131. They agree with each other but only qualitatively with 
lattice QCD. We will present results using four distribution amplitudes suggested by QCD sun 
rules [ll, 12, 13, 141. This implies a de facto assumption that the higher moments vanish, which 
may well be unrealistic at accessible values of s. 

Two previous attempts (15, 9] to compute nucleon Compton scattering using perturbetive QCD 
have obtained different results, especially for wider center-of-mass scattering angles. Our results 
disagree with both papers. Reference [9] asserts that the integration scheme of Ref. [IS] yields 
incorrect answers. However, we doubt that the scheme in Ref. [9] is robust. In an example from 
pion Compton scattering that can be integrated analytically, our method gives the correct result, 
but the method of Ref. [9] does not. In another example, the contribution of diagram “AN” to a 
specific h&city amplitude, the imaginary part generated by our implementation of the method of 
Ref. [9] bore no resemblance to our results. And the imaginary part of diagrams like A51, in which 
two internal propagators can go on shell, is a dominant part of the cross section. 

This paper is organized as follows: In sect. 2 we discuss the origin of the imaginary part of the 
Cornpton amplitude, and explain why the process is dominated by short-distance interactions, even 
though intermediate quarks or gluona can go on shell. Sect. 3 outlines the details of the calculation. 
In sect. 4 we compare our results to experiment and discuss theoretical uncertainties. Sect. 5 
assesses the potential of future experiments and contains some remarks relevant to the experimental 
determinationof the nucleon distribution amplitude. Finally, there are several technical appendices. 
The kinematics are set out in Appendix A. Expressions for the Feynman diagrams contributing to 
the hard-scattering amplitude are tabulated in Appendix B, and an example diagram is worked out 
in detail in Appendix C. Appendix D reviews our method [4] for performing numerically integrals 
defined by the principal part prescription. 

2 Analytic Structure of Compton Amplitude 

An especially interesting aspect of hadron Compton scattering is that perturbative QCD predicts 
a non-zero imaginary part to the amplitude, even in leading order. There are kinematic regions of 
momentum-fraction space, in which certain internal quarks or gluons can propagate on the mass 
shell. One might worry about treating perturbatively such a process. Generally speaking, a freely 
propagating quark or gluon would be modified by long-distance effects. Consider, however, the 
space-time diagram of a typical Feynman diagram in pion Compton scattering, depicted in Fig. 2. 
In this diagram the gluon with momentum p = zpf k - yp’ can go on shell when z( 1- ~2) - ycz = 0, 
where s = sin(#, c = cos(je), and 8 is the center-of-mass scattering angle. But in that case 
its three-momentum points in a direction that separates the quark and anti-quark [16]. In our 
conventions, the scattering takes place in the X2 plane, near the origin, with the outgoing hadron 
moving towards X > 0. (X and 2 are spatial coordinates.) But when q2 = 0 one finds QX < 0. 
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Figure 2: Space-time diagram of a Feynman diagram with an internal gluon on mass shell. When 
the gluon propagates a short distance, as shown, the pion can re-form. If the gluon propagated tan 
times further, the re-formation probability of the pion would be tiny. 

Hence, if the on-shell parton propagates over any significant distance, then the pion has a negligible 
probability tore-form. The entire exclusive reaction takes place in a small region, despite the gluon’a 
on-shell propagation, and perturbative QCD is applicable. This feature is generic: internal on-shell 
partons always tend to tear the hadron apart, decreasing the likelihood that the process indeed be 
an exclusive one. 

A related question is whether the imaginary part is reliably estimated by low-order perturbation 
theory, or whether Sudakov corrections must be re-summed. Fortunately, the former is the case 
[17]. The essential point is that the singularities do not pinch. In a higher order correction, the 
quark momenta will be off shell, by an amount X ‘, before emitting the parton that can go on 
shell. The position of the pole in momentum-fraction space is shifted by O(X2/E2), where E is a 
hard momentum flowing the Feymnan diagram. Since the contour is not pinched, it can move to 
accommodate the shift. As a result, soft contributions produce only negligible effects of 0(X2/E’), 
rather than large Sudakov logarithms O(log(Es/Xs)). 

The appearance of an imaginary part at leading order in as is a non-trivial prediction of 
perturbative QCD. It means that the phase of the amplitude need not be small, and that only a 
complete calculation can predict it. It would be surprising if the phase were small for all scattering 
angles; indeed it would impose strong constraints on the form of the nucleon distribution amplitude. 

3 Details of the Calculation 

The process TN -+ TN (N = p, n) is described by the helicity amplitudes M$:(s, t), where h (h’) 
is the initial (final) nucleon helicity and X (X’) is the initial (final) photon helicity. Symmetries 
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impose some relations among the amplitudes: Parity invariance implies 

M;;:(s,t) = Mifi?:(s,t), (3.1) 

where the bar denotes opposite helicity, and time-reversal invariance implies 

M$(s, t) = Mi:;(s, t). (3.2) 

In the course of calculating MAX’ ,,,,,(s, t) it turns out that Eq. (3.1) is best viewed as a labor-saving 
device, but Eq. (3.2) is best implemented as a check. 

In perturbative QCD the helicity amplitude is given by 

=I, =z, 4$%, h,k Y, h’, W&(YI, ~a, ~3). (3.3) 

Here #i(Zlr zs, 23) is the distribution amplitude for the 6th Fork state in the nucleon. This paper 
works in the leading twist approximation, in which only the valence Fock states contribute. For 
the nucleon there are three spin-flavor combinations; cf. Eq. (3.7). Th,e hard-scattering amplitude 

from diagram d of the three collinear quarks with the photons, Ty)(z, h, X; y, h’, X’), factors into 

T,!d)(z, h, A; y, h’, A’) = Ccd)g’ Z,!d)!$d)(z, h, A; y, h’, A’), (3.4) 

where C(d) is the SU(N) color factor, g is the QCD coupling constant, Zi(d) is the product of the 
electric charges of the struck quarks, and fcd)(zr h, X; y, h’, X’) is a color- and flavor-independent 
factor containing propagators and spin information. In the description of the calculation, when we 
write “hatd-scattering amplitude” we frequently mean i;cd)(z, h, A; y, h’, A’). 

Because QED and QCD are vector gauge theories, the amplitudes for which h # h’ are propor- 
tional to the (quark or nucleon) mass. At high energies they are therefore suppressed, and in the 
leading twist approximation they should be ignored. Combining this observation with Eqs. (3.1) 
and (3.2) one finds that there are eight non-negligible helicity amplitudes, of which only three are 
independent. We shall take 

M;;(s t) , > M;;(s t) 1 3 and M:$s, t) 

to be the independent set and present results for these helicity combinations in sec. 4. 

(3.5) 

3.1 Distribution amplitude 

The most general state of collinear quarks with proton quantum numbers and helicity h = +l is 

IPT) =#dzl C~i(~lrll,+3)li;2*,2s,~~)r 
, 

(3.6) 

where f~ is a constant, to be determined in a non-perturbative calculation or from experiment. The 
measure for the quark momentum fractions is [dz] = dzldrsdzs6(1- II- zs- 1s). The spin-flavor 
states are 

ll;R,% 9) = iZlr(z1)ul(~3)dt(~3)), 

~~;~~,~zr~3) = luT(zl)dl(Zz)ut(z3)), 

13;% ZZ,%) = tdt(Z1)Ul(Za)Ut(Z3)); 

(3.7) 
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Table 1: Coefficients of distribution amplitude #Jo in several models based on QCD sun rules. 

model CZ coz KS GS 
Ref. [Ill [121 [I31 [I41 

1 1.69 5.880 8.40 6.040 
21 -9.26 -25.956 -26.88 -16.775 
23 -10.94 -20.076 -35.26 -34.985 

4 22.70 36.792 35.28 -1.027 

z?, 13.45 19.152 37.80 12.307 

2123 9.26 25.956 30.24 111.320 

note that the index i labels the slot taken by the down quark (counting from the right), and the 
quark with helicity opposite to the proton’s momentum is always in the middle slot. There is only 
one independent distribution amplitude, #I, the others being related to it by 

h(~l,~l, 23) = -[41(21,za, 23) + 41(23,22, Zl)], 
(3.8) 

-?h(Q, ZI,%) = 41(23, -2,21). 

The state with h = -1 is obtained by flipping the helicity of all the quarks in Eq. (3.7); neutron 
states are obtained by switching up and down quarks and multiplying the state by -1. 

The distribution amplitude is weakly dependent on renormalization scale Q: 

&r =a, 23) = 1203~3~3 ~~,(Q’)&,(~I, zs,z3), (3.9) 
n 

where the &,(zl, rs,zs) are the Appell polynomials, which are orthonormal on the measure 
12Ozlzp3[dz]. The expansion coefficients, or moments, are matrix elements of three-quark op- 
erators, renormalized at P* = Qs: f~a,,(Qs) = (OlO,lp~). The Q’ dependence is due to anomalous 
dimensions of the 0,. There are theoretical calculations of the first six a, at Q2 = l-2 GeVs, us- 
ing QCD sum rules, which, together with other phenomenological considerations, have motivated 
models for the distribution amplitude. The first six moments evolve too slowly in Qs to affect 
the comparison with experiment, so we have neglected the evolution. Instead we have used four 
different model distribution amplitudes (11, 12, 13, 141 to investigate the impact of the distribution 
amplitude on the results. The asymptotic distribution function &(z) = 120~~1~13 is as apt at 
present energies as the asymptotic &function structure function. 

The first six moments only involve Appeal polynomials of degree no higher than quadratic. 
Table 1 gives the coefficients of the listed monomials for $1, after eliminating zs = 1 - z1 - 13 
entirely. The coefficients for $1 can be obtained from Table 1 and Eq. (3.8). The numbers may 
appear unfamiliar to experts, because Eqs. (3.6), (3.7) and (3.8) are cast in a way convenient 
for convoluting the distribution amplitude with the hard-scattering amplitude, rather than the 
arrangement used in the sum-rule analyses. 

3.2 Hard-scattering amplitude 

There are 378 Feynman diagrams contributing to the hard-scattering amplitude. They can be 
classified according to the arrangement of the gluon lines into seven groups, as illustrated in Fig. 3. 
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Figure 3: The sewn ways of arranging glum lines in the Feynman diagrams. 

In Group G there are 42 ways of attaching the two photons, but the color factor vanishes. In Groups 
A-F there are 56 ways of attaching the two photons, and the color factor is [(N + l)/ZN] (= 4/9 
for N = 3). Diagrams in Groups B, D and F may be obtained from A, C and E, respectively, by 

E : q - ~3, y1 - ~3, and el ++ es. (3.10) 

The calculation of the hard-scattering amplitude is easiest using the helicity formalism outlined 
in Ref. [2]. We have used this formalism to compute all diagrams in Groups A, C and E for 
h = h’ = +l. We found it convenient to assign arbitrary helicity to the (on-shell) photons, 

IYin) =aI t) + PI 1)~ 

l7c.d =d T) + 61 1). 
(3.11) 

This approach provides all four amplitudes with photon helicities X, X’ = fl, which is redundant, 
cf. Eq. (3.5), but useful. Table 2 shows the number of diagrams in these groups that vanish (for 
massless quarks) and that have one, two or three propagators that can go on shell. We sort the 
diagrams according to the number of potentially on-shell propagators, and we tailor the integration 
over momentum fractions to each case separately. 

By time reversal symmetry each diagram in Groups A, C and D is related to one in Groups B, 
EandFby 

I: a ++ y, p c-t 6, and z; c) y<, Vi. (3.12) 

We have used the operation 7 to check Group C vs. Group E and the composition I D E to check 
Group A vs. itself. (The check on Group A almost always relates distinct diagrams, so it is not 
trivial.) These checks were easy to carry out efficiently, because we had used the photon states ia 
Eq. (3.11). 

Appendix B tabulates the contributions T-(~)(z, h, X, y, h’, A’) of all non-zero diagrams, in a way 
that makes clear the relations implied by the operation &, I and I o E. 
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Table 2: Number of diagrams that vanish or have one, two or three propagators that can go on 
shell. 

Group vanish no props. one prop. two props. three props. 

A 12 8 12 16 8 

C 30 6 8 8 4 

3.3 Convolution of hard-scattering amplitude with distribution amplitude 

In addition to using the operations & and I to check the calculations, one can also use them to 
simplify the convolution. One can restrict the sum to diagrams d E AU C U E in the following way. 
Consider the sum of the contributions from diagrams d and C(d). Using Eq. (3.10), relabeling the 

integration variables and exploiting Z,!Lcd)) = Z$i), &(&(z)) = &(i)(t), yields 

M = Zig’ d,Az,, /kWdyl pcd)( =; VI C (zicd’d%(+)K(Y)) j (3.13) 

where nonessential labels have been suppressed. Similarly, when ,I = X’ one can relate the contri- 
butions from diagrama d and I(d) an d d re uce the range of the sum further, in favor of another 
factor of 2. 

We have tried to integrate analytically over as many of the momentum fractions as we can. In 
an automated computer approach, these integrals could be done symbolically. The basic strategy 
starts with eliminating one each of the 2 and y momentum fractions, and resealing another so that 
the integration region is a unit square. For example, 

I [dz]F(z,, zz,zs) = J,l dzl f dz$(zl, a) = l1da ~ld&‘(n, %za), (3.14) 

where P(zI, ~3) = F(z~, 1 - ~1- 23,23) and z; = l- Zi. (We do not necessarily eliminate 21; when 
ra appears in the propagator of a line that can go on shell, we then use Eq. (3.14) to eliminate z1 
or 23.) Naturally, the difficulty of performing the integral increases as more internal lines can go 
on shell. We discuss the various cases separately: 

3.3.1 No propagators on shell 

Here all momentum-fraction integrals decouple, leaving products of 

I dzP-%‘+-l = B(m,n) = r(m) r(n) 
qm + n) . 

(3.15) 

All these diagrams can be integrated analytically/symbolically. 

3.3.2 One propagator on shell 

Here the momentum-fraction integrals for the initial and final states are coupled by a denominator 
of the form 

1 
(3.16) 
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where f E {zl, ZZ,ZS, Z1, zz, SJ}, r) E {yz, yz, ~3, #I, Bz, $jx} and “P” stands for principal part. The 
numerator is a polynomial in 6 and 7, and the momentum fractions other than [ and ‘I. For the 
imaginary part, the integral over E, say, is carried out using the &function in Eq. (3.16), and the 17 
integral is carried out analytically. For the real part, the integral over t is carried out analytically, 
leaving a mundane, if complicated, integral over 7, which is carried out numerically. In both cases 
the momentum fractions other than [ and 7 can be carried out using Eqs. (3.14) and (3.15). 

3.3.3 Two propagators on shell 

Here there are two denominators of the formin Eq. (3.16), but the domain of integration with both 
lines on shell is of measure zero. For details see Appendix C, which presents the evaluation of a 
diagram from this class in detail. 

For the two contributions to the imaginary part, the momentum-fraction integrals can be re- 
duced to the hypergeometric function. The imaginary part from this class of diagrams makes 
the largest contribution to the scattering amplitude, and we have evaluated it with no numerical 
uncertainty (except round-off). 

For the real part, we perform numerically a two dimensional integral of the form 

1 
I I 0 4 olWC,rt)P~(l _ ,$) _ +’ (3.17) 

where fl([, II) is the result of performing the other principal part integral analytically. It is important 
to treat Eq. (3.17) in a numerically robust way. We have used the method of Ref. [4], whichensures 
that the large peaks on either side of the pole cancel point-by-point. Appendix D reviews this 
method, and compares it to the method of Ref. [9], of keeping E small but finite. 

3.5.4 Three propagators on shell 

Here there are three denominators of the form in Eq. (3.16): two gluon lines and a quark line. The 
kinematics permit both gluons to be on shell simultaneously, but if the quark is on shell, the gluons 
must be off shell, except on a set of measure zero. 

For the imaginary part, there are three contributions, each of which can be reduced to two- 
dimensional integrals. One integration is trivial, using the &function of Eq. (3.16). It is possible to 
perform another integral analytically, even when the &function comes from a gluon line, in which 
case, the integral over the momentum fractions in the other gluon line is defined by the principal 
part. 

The real part has two distinct contributions: when no line is on shell, or when both gluons are 
on shell. In both cases, the principal part of the momentum fractions in the quark line is treated 
using the method in Appendix D. The other momentum fractions are handled analytically, using 
either Eq. (3.14), the hypergeometric function, or J-functions. 

4 Results and Discussion 

The spin-polarized cross section is given by 

&j$(s, t) 
dt = &ws, tv. (4.1) 
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Our results for s’du/dt are plotted in Fig. 4 for the proton and in Fig. 5 for the neutron. We 
present the three polarization combinations in Eq. (3.5), as well as the unpolarized cross section 

du(s,t) I c+,$(s, t) -=; c dt dt 
h,h’,A,X’ 

(4.2) 

We evaluated the helicity amplitudes in steps of loo for 20’ 5 l? 5 160° and interpolated the 
real and imaginary parts separately, using cubic splines. Four different distribution amplitudes are 
shown, CZ (dashed lines) [ll], COZ (solid lines) [12], KS (dotted lines) [13], GS (dot-dashed lines) 
[14]. Fig. 4(d) also includes the data from the Tufts-MIT-Cornell experiment [5]. Perturbative QCD 
(with assistance from QCD sum rules) agrees well with the data, especially in light of uncertainties 
in the normalization, discussed below. 

Figs. 6 and 7 exhibit OUT results for the phase of the amplitude, as a function of center-of-mass 
scattering angle. Since the real and imaginary parts are both O(us), the phases are O(I). 

There are a few features of the plots that, perhaps, should be pointed out. In general, the 
real and imaginary parts of the amplitudes vanish at some value of 0, in which case the phase is 
a multiple of 90°. Sometimes these zeros appear at nearly the same 0, leading to deep dips in 
the cross section. The GS distribution amplitude, which incorporates assumptions about nuclexm 
structure, gives results that are frequently quite distinct from the others. Finally, the neutron, 
which interacts electromagnetically only because of its sub-structure, has a Compton cross section 
about the same size as that of the proton. 

According to the dimensional counting rules (18,1], Pdojdt should be independent of s. In QCD, 
several effects lead to deviations from this rule. Fist, there is the running of the QCD coupling 
constant, which we have fixed at ns = 0.3, as in the previous perturbative-QCD calculations 
[15, 91. Our leading order calculation of the cross section is sensitive to this choice, because it 
is proportional to ai, but the dependence is purely multiplicative. Second, there is the running 
of the distribution amplitude, which enters in a very complicated way. The dependence of our 
predictions on the distribution amplitude gives a qualitative estimate of this effect: it is of the 
same magnitude as the experimental data’s violation of the dimensional counting rules. Third, 
there are mass effects, because the calculation was done neglecting quark (and nucleon) masses, 
but the laboratory energies E, of photon beams in the experiment [5] are not high enough to neglect 
the proton mass in determining s = ZE,rr+ + m,,. 2 Finally, there are higher twist effects, coming 
from scattering of non-valence Fock states in the proton or photon. The most important of these 
is the qq component of the photon, whose contribution to the amplitude is suppressed by only one 
power of s (11. 

The largest systematic uncertainty in OUI predictions comes from the nucleon decay constant. 
The cross section is proportional to f& and we have used the value fN = (5.2 + 0.3) X 10e3 GeVs 
suggested by QCD sum rules [ll, 131. Accepting the error estimate at face value yields a 23% 
uncertainty in the cross sections. On the other hand, using the value suggested by quenched lattice 
QCD (lo], fN = (2.9 + 0.6) x 10m3 GeV’, would reduce the cross section by a factor of 9. (Such 
a substitution is a bit simple-minded; it would be more sensible to compute several moments in 
lattice QCD and use a distribution amplitude derived from those moments.) The lack of agreement 
between theoretical calculations of the decay constant underscore the need to determine it directly 
from the data. 

Two previous papers [15, 91 have attempted the calculations presented here and have obtained 
different results. Unfortunately, we do not verify either one. For the CZ distribution amplitude OUT 
results for the cross section are smaller than those of Ref. [15] and larger than Ref. 191. Furthermore, 
as a function of 0 the phases in refs. [15,9] do not resemble ours at all. For 0 > 90’ the discrepancy 
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in the cross section is as large as a factor of five. In our opinion, it arises from those references’ 
treatment of the on-shell parton lines. 
incorrect. However, OUT tests of Ref. 

Reference [9] maintains that the method of Ref. [15] is 
[9]’ s it-method did not succeed in evaluating correctly the 

imaginary part of diagrams where two internal lines can go on shell, which typically makea the 
largest contribution to the amplitude. The ir-method replaces the on-shell J-function by a sharp 
Lorenteian peak. Consequently, the four-dimensional integral comes from the neighborhood of a 
three-dimensional hypersurface. This hypersurface is not aligned with any of the integration axes, 
making it exceedingly difficult to integrate numericaIly. It is much better to integrate a &function 
the old-fashioned way-by hand. 

5 Conclusions 

This paper has presented OUT results for wide-angle nucleon Compton scattering in leading-order 
perturbative QCD. This is a challenging calculation for two reasons. First, there are 52 independent, 
non-zero diagrams contributing to the scattering amplitude. We have been very careful to evaluate 
them this correctly. Each author independently worked out all diagrams in classes A, C, and E 
(cf. Fig. 3), of which 72 vanish and 96 are non-zero. We then eliminated algebraic slip-ups by 
applying Eq. (3.12) and by comparing the two lists of results. Second, the momentum-fraction 
integrals are not straightforward. Internal partons can go on shell, and the associated singularities 
in the integrands must be treated with caution. Our approach has been to perform these integrals 
analytically, wherever possible, or use the robust technique outlined in Appendix D [4] and VEGAS 

131. 
With any leading-order perturbative calculation, the question of higher order corrections arises. 

While one would not expect them to alter the qualitative agreement between theory and experiment, 
they would assist the experimental determin ation of the distribution amplitude. Without higher 
order corrections it is impossible to extract the nucleon decay constant reliably. The cross section 
is proportional to (a&)‘, and the higher-order corrections are needed to pin down the ambiguity 
in the running of the coupling constant. Deviations from the energy dependence suggested by 
dimensional counting rules may prove useful in determining the higher moments. Finally, it is 
plausible that higher-order QCD will better describe the flatness in the angular distribution for 
9 > 79. Of course, calculating the higher order corrections will be impossible without carefully 
designed computer programs to generate and evaluate the diagrams quickly and to perform the 
loop and momentum-fraction integrals correctly. 

To assess the experimental prospects one must appreciate the steep see fall-off of the cross 
section. Let us use the experimental cross section [S] and this rule, and, for the sake of argument, 
let us suppose measurements of the differential cross section du/d(cosO) are possible at the level 
of picobams. In a colliding beam experiment, set up so that the incident photon and proton have 
equal energy, one has dt = s d(cos&,.), and experiments are feasible for s < 40-60 GeV’. In a 
fixed target experiment, unless 4-b < 1 one has dt a; m& d(cos&,), and experiments are feasible 
for s < 20-30 GeV1. 

At HERA the kinematics are more involved, because of the high electron-proton center-of-mass 
energy, and because of the asymmetry in the energies of the beams. For example, the incident 
photon is virtual with kZ = -Q’ negative. When Qz & sw pi 40-60 GeVZ, the case for which we 
have results, the outgoing photon and proton are very energetic, but emerge nearly parallel to the 
proton beam. When Qz > s,,~ the outgoing particles emerge at wide angles, but their energies are 
low. At best, then, there might be an intermediate region, where the final state is easy to detect, 
yet sYP is neither too small nor too large. 
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Reference [9] presented results for nucleon Compton scattering when QZ # 0, as well 8s 7B --) 
7B’, where B (B’) is a nucleon or a A resonance. More recently, results have appeared for the family 
of processes 7p + MB, where M is a meson and B a baryon [19]. The on-shell propagators were 
treated by the k-method. We hope that these processes will be re-evaluated using our analytical 
and numerical techniques. The details in the appendices and sec. 3 should prove helpful ia this 
undertaking. 

Large momentum-transfer exclusive processes are important because they test QCD ia a way 
complementary to inclusive reactions. For elrample, the distribution amplitude is proportional to 
the hadron wave function, whereas the structure functions are proportional to the square. Data exist 
for several 7p processes 8s well as 77 --t pp. With an appropriate battery of anaiyticai and numerical 
techniques, it may be possible to extract the nucleon distribution Bmplitude from experiment. The 
moments of q5(z1,zs,zs) could then be compared directly to theory, 8s non-perturbative QCD 
calculations improve. This approach is probably sounder than the present strategy-t&n in this 
paper and elsewhere--of using model distribution amplitudes that unrealistically neglect higher 
moments. 
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A Kinematics and Spinor Algebra 

This appendix collects our conventions for the kinematics and spinor algebra used to compute the 
Compton scattering cross sections. 

A.1 External momenta 

Let p and k (p’ and k’) be the incoming (outgoing) nucleon and photon momenta, respectively. In 
the center-of-mass frame these vectors have Cartesian components 

P = E(l,O, 0, I), 

k = E(l, O,O, -l), 

(A.1) 
p’= E(l,sin6’,0,cos0), 

k’ = E(l, - sine, 0, - COSB), 

where 0 is the scattering angle and the azimuthal angle has been set to zero. It is more convenient 
to work with light-cone components, defined for arbitrary vector v by 

vJ+ = j;(vO t u"), o- = j;($ _ v3), 

d' = &(v' t id), ~3 = j;($ _ iv’). 
(A.4 
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The dot product of two vectors is then 11. w = v+w- + v-w+ - vLwR - vRwL. In light-cone 
components (+, -, L,R) Eq. (A.l) can be re-written: 

P = JZE(LO, o, O), 

k = diE(O, 1,0, 0), 

p’ = .v5E(c2, 2, SC, SC), 

k’ = &E(a2,c2, --SC, -SC), 

(-4.3) 

where 8 = sia(i0) and c = cos(+t?). 
The Mandelstam invariants, neglecting masses, are 

s = (p t k)’ = (p’ f k’)l = 4E’, 

t = (p - p’)l = (k’ - k)’ = -4E2s2, (A.41 

u = (p - k’)l = (P’ - k)l = -4E’ca, 

with 8 f t + u = 0. These variables are useful in writing manifestly invariant expressions, using 

3 = m and c = m. In particular, they make easy the check of our calculations against 
the reaction 7-y + pp, which is related by crossing. 

A.2 Photon polarization 

Let the incoming (outgoing) photon polarization vector be denoted by ci (6,); the Carte&n com- 
ponents are 

=i(T) = A;(L -4 01, 41) = -j;(l,i.O), 

et(T) = ji(cos6, 4, - sine), l f(l) = -j;(cosf?,i, - sine), 
(-4.5) 

following Messiah’s conventions [ZO]. Note that k points along the negative z-axis, that k’ is at 
angle ?r t 0 to the z-axis, and that ~(1) = -e(t)‘. 

The time component of the four-vectors corresponding to all polarization vectors is 0. The 
light-cone components (t, -,&IL) are: 

4T) = (f-TO, 1, O), <i(l) = to, O7 O, -11, 

q(T) = (-SC, +Jc,c2, d), 
(A4 

et(l) = (i-x, -sc,s*, -3). 

The states defined in Eq. (3.11) have polarization 

ci = aci(T) + b<(l) ad ef = yef(T) t act(l). 

A.3 Dirac matrices 

We use the chiral representation of the Dirac matrices, i.e. 75 is diagonal: 

,y5 = 75 = iyq+p = 1 0 i 1 0 -1 . 

(-4.7) 

(A.81 
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The matrices ye’ and d are given by 

(A.91 

where r$’ = (-1, &r). 
Momenta of fermion lines are represented by tweby-two matrices g, = -(qOl f p . 0) in the 

belicity fwmalism. The subscript is chosen according to the helicity of the fermion line in question. 
Explicitly, 

In particular, the external momenta take form: 

P+ = k- = -2E , $- = p+ = -2E 

and 

$: = p’= -2E , +&=-2E( :I, ;F); 

and the polarization vectors take the form 

A.4 Quark wave functions 

(A.10) 

(A.ll) 

(A.12) 

(A.13) 

In computing the hard-scattering amplitude, the appropriate factors for the external quark lines 
are u*(zp)/fi = u*(p). These are 

for incoming quarks and 

(A.14) 

u+(p’)=dz , IL(p’)=rn (A.15) 

for outgoing quarks, where the subscript denotes the helicity. As explained in Ref. [2] one occa- 
sionally charge conjugates a quark line; in the Compton scattering calculation, this must be done 
for diagrams in Groups C and E. The charge-conjugate wave functions are: 

L(p) = iu2u;(p) = v5E , L(p’) = iQlu;(p’) = v5z (A.16) 



Table 3: Non-zero contributions to ff’)(z, t, X; y, T, 1’) f ram Group A, and hence Group B, which in obtained using the operations & and 7. The 
operation 7 D & usually generates a distinct diagram, so we do not lid both expressions. When 7 DE returns the same diagram, WC enclose the 
diagram label in parentheses, to emphasire that it should not be counted twice. 

d W 
C(d) 7 o E(d) ri%,t,t;Y>t>t) ~%,T, t;v, t,i) +‘)(., t, 1; Y, t, T) fi’)(., t, l;u, T, I) 

All B22 c 1 
B66 A77 z*s;zsg~ 

0 0 0 
6’ 

-- 
All B22 -- 
866 A77 

-1 1 

;rE i:zsg:M 

-1 1 

;r; Z,i,Z~~:ys 
0 

--c 1 

;T z,z:zsg& 

Al2 Bl2 c 1 

B67 A67 2 .I%.SYli$Yz 

A21 B21 
B76 A76 

0 

0 
Al3 B52 1 1 - 212 1 1 

B63 A57 IIczwswY3(21, Yl) e~lzsRYaa(~l,Yl) 

A31 B25 
B36 A75 0 0 0 

Al4 B42 =a- #I Es 
B64 A47 -=wamh(%*)(~3,Yl~ -=wsfflYs(wd(ul) 

0 0 

A41 B24 1 l-fir’ 1 1 

B46 A74 -~zsAYs(M,~l)(Yl, %3) -~zlzsihys(Yh~J) 
0 0 
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Table 3: (cont.) 

d 764 
E(d) 7 o E(d) 

Al5 B32 
865 A37 

0 

A51 B23 
B56 A73 

Al6 B72 
B61 A27 

1 l-m#’ 

: ~3YzY&h, zd(Yh4 

6’ 

T.d.*,dzdhlb3,4 

A61 B27 
B16 A72 

1 
%(M, 4(Yl, %)(=a, Yd ‘1c.1.3(UI,t,)~~lil)(..,~) 

Al7 (B62) 
B62 (Al?) 

2s - M 
6zc~~th(~~,yl)(~s,yl)(ys~~~) 

A71 (B26) 8’ 1 
B26 (A71) T(!h,4(M, *s)(*a,vs) 

A24 B41 
B74 A46 

A42 814 
B47 A64 

A25 B31 
B75 A36 

2 1 

Y- wd~l, M&3, Yl) 

--c l-fig’ 

6’ zsYllm3(Ylhzl)(Yl,~s) 

0 

Wz*T,T;Y, T, 1) fi%,t,l;Y,T,T) w., T> liar, t, 1) 

*a 
=z123Y2Y.3(z,,Yl)(is,Yd 

1 4 - Ylr’) 

e ~1w2Yh 4b 8 *a) 

2 %a(1 - ZJ) 

c.lZ1(ZlrYl)(t~,Yl)(~.,.s) 

0 

a' 22 

~4Yl, 4(Yl,shYd) 

1 

==3ihY3h(mh)(%Yl) 

0 

1 

-CZ3Y2Y3(wh)(wl) 

0 0 

2 1 2 22 

~.sY3h(M,~l)b,~s) 7 Z1%Y3(Y1> 4(Yl, 4 

0 

0 

0 

84 
&b”)(lLhlh~ 

1 lbylr’ 

cwlYs(~l,R)(~StYI) 

0 

0 

0 

0 

2 2:s - Yl + S’(ilih + OlY, + 23Y3 - 
c WdY~, 4Y,, G)(% Ys) 

c 1 - y,s’ 

“wlRY+l Yl)(ZS Y1) > I 

0 

0 
p-2 1 - y*s’ 

~wlYm(~l Y,)(iS Yl) > I 
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Table 3: (cont.) 

d WI 
E(d) 7 o E(d) wz> t, tin tr T) 

A52 B13 c I-& 

B57 A63 7 ZJYIy1Ys(Yl, Zl)(Yl, 4 

A26 (B71) --c 1 

B71 (A26) c (21, Ydh Ydh 4 

A62 (B17) 
B17 (~62) 

A34 B45 
B34 A45 

A43 B54 
B43 A54 

A35 (B35) 
B35 (A35) 

A53 (B53) 
B53 (A53) 

A44 (B44) 
B44 (A44) 

- 
m (B44) -- 
B44 (A44) 

0 

-1 (1 -z&(1 - fi#‘) 

;i;.,zmnvlys(R,Za) 

0 

1 (1 - zrr’)(l -MS’) 

;?;wrzrYlmYs(Yl,Z3) 

-e M - 2.3 
0’ ~1~3%wlPd~S,Ylh) 

c 1 

~Z12&Mlw3(Yl,iS) 

W(., t> t;u, t, 1) 

0 

1 1 - 23*’ 

~.1)(.1,yL)(4,yl)(lbli.) 

0 

0 

-1 l-&I’ 

~.,.3YlihYa(Yl,~s) 

0 

1 l-M*’ 

~z,zslhulYa(Yl,~s) 

--c 1 

2 ZlwltiYa(% Ylh) 

0 

i;c’)(z, t, l;v, t, T) wz2 TPliY, T,l) 

1 

=~sYm3bldYl~~3) 
0 

-2 1-yl#’ -1 (l- Q8’)(1 - y,r2) 

TYl(21rYl)(~.,Yl)(M,4 T23M(21,~h)(~*,yl)(lklZJ) 

0 0 

c 1 

~zlzrosYlYa(%Yl) 

0 

2 1 

;T.waYamh(%,Yl) 

0 

0 

1 1 - 211’ 

r,.,.2wlM(Yl,ts) 

-e 1 

~.1Z&YlY3(~~,Yl) 

0 

-2 1 

8’ 21W3YIYm(%Yl) 

1 1 

cwaYlhM(Y,,is) 

-2 1 

~21zsf3YAim(Zs,M) 

0 
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Table 4: Non-zero contributions to f’(‘)(z, t,& y, T, A’) f ram Group C, and hence Groups D, E and F, which are obtained using the operations E, 
7 and 7 o E, respectively. In reading the middle two columns for the E and F contributions, one must keep in mind that 7 and 7 o E interchange 
helicities. 

f-q.9 t, TiY, t,t1 fwz, t> t;v, t, 1) f-y., t> liar, t> t) w., t, liar, t, 1) 

Cl2 El2 e 1 
D67 F67 ;Iz,z;z,ylfiyl 

0 0 0 

C21 E21 
D76 F76 

0 0 

Cl7 E52 e 1 

063 F17 ~rlt*.2Yays(zl,Yl) 
0 0 0 

C71 E25 - 

036 F71 

0 0 1 1 1 1 ZJ 

cP*wm(Yl, 21) ~zltlz2lbYs(Yl,~l) 

C22 El1 -e 1 
077 F66 7i:z,y&:Y) 0 0 0 

0 
-- 
C22 El1 -1 1 -- 
077 F66 Fc qz&:M 

-e 1 

T “;ZIMg& 

C23 E41 
0 0 

a’ 1 2 1-@J 

074 F56 ~.2Yl(wd(lh#~1) ~Ylhrlh)(M,4h~1) 

C32 El4 
047 F65 

0 0 0 
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Table 1: (cont.) 

d W 
E(d) 7 o E(d) fi”‘h t, LY? t, t) f% t,t;v, t, 1) fi%* t, l;v, t, T) f-v., T, l;v, t, 1) 

C24 E31 
075 F46 

C42 El3 
D57 F64 

C25 E71 
D71 F36 

C52 El7 
Dl7 F63 

C26 E61 
072 F26 

C62 El6 
027 F62 

C27 E51 
073 F16 

C72 El5 
037 F61 

C37 E54 
043 F15 

0 0 

-1 (1 - YJ#‘)’ 

TYIYI(Y1,EI)(EI,Yl)(fl,M) 

0 

--c I-yl*’ 

~Z,wlY2(YlI~I)(~1#M) 

0 

c 1-YJ 
r- * ~lwlY2h~l&l,YJ) 

1 1 

c %wm(~l, Yl) 

-1 1 

T- %wlYa(lh, 21) 

0 
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C73 E45 0 
1 1 1 

0 
1-Q 

cw2YlbdYl,~*) ~wlYs(M,4(M,~1) 034 F51 

C47 E53 
053 F14 

C74 E35 
035 F41 

C57 E57 
013 F13 

C75 E75 
031 F31 

C67 E56 
023 F12 

C76 E65 
032 F21 

C77 E55 
D33 Fll 

Table 4: (cont.) 

W’) 
E;fl) 70&(d) f?., t, t;v, t, t) fl’)(., t, t;v, t, 1) f?., T, liY> t> T) wz, T,l;v, t,u 

-- 
C77 E55 1 1 

0 
1 1 c 1 

033 Fll Z.*%,z*yly& ~Z,ZIZlyl~yJ PZ,Z,ZIR~y& 
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B Expressions for the Feynman Diagrams 

Tables 3 and 4 give analytical expressions, in Feynmm gauge, for the hard-scattering amplitude 
ptd)(z, T,X; y, T,x’), for all non-vanishing diagrams. Diagrams are denoted by a letter, correspond- 
ing to the group in Fig. 3, and two digits, whichlabel the segment of quark line to which the initial 
and final photon attaches. In the cases where both photons attach to the same segment, we denote 
the crossed diagram with an overbar. For example, A51 is the diagram with initial photon attached 
to the fifth segment and the final photon attached to the fmt segment, cf. Fig. 8. 

The tabulated expressions are for a set of independent diagrams: the other can be obtained 
using the operations E, 7 and l- o E. For some diagrams d one has (I o E)(d) = d; the redundant 
entry of such a diagram is in parentheses, to emphasize that it should not be counted twice. Keep 
in mind that, in addition to exchanging z and y, time reversal T exchanges initial and fmal photon 
helicities, 

7(W(z, f, A; y, t, A’)) = wqy, T, A’; 2) T, A). P-1) 

In other words, T affects not only the contents but also the labels of the (middle two) columns. 
The kinematic quantities zi, yi, c and a are as defined in sect. 3 and Appendix A; also S = 1 -z. 

Finally, 
(2, y) = z(1 - y2) - yea P-2) 

denotes the denominator of a potentially on-shell propagator. For brevity, we have extracted a 
factor of 8/sa, and we have omitted the +ic from each (z, y)-propagator. 

C Diagram A51 in Detail 

To illustrate our methods, this appendix presents a detailed evaluation of diagram A51 for the 
process 7p + 7~. This diagram is shown with helicity and momentum assignments in Fig. 8. The 
internal momenta in Fig. 8 are 

41 = ZIP - k’, 
qa=w-k’-yl#, 
43 = (I- 23)~ - k’ - YIP’, 
a = yap’ - k, 
QS = YSP’ - %P, 

(C-1) 

where the external momenta p, k, p’ and k’ have been defined in Appendix A. In Eq. (3.4) the 
color factor C(‘61) = 4/9; the other factors and the construction of the scattering amplitude in 

P 

k,e k,e k', e' k', e' 

q, q, 
t t 

qz qz 

43 43 9, q4 9, q4 
t t 

t t 

Figure 8: Diagram A51, which Appendix C works out in detail. 
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Eq. (3.3) are discussed below. For brevity, we will suppress the proton h&city h = h’ = +1 in the 
factor ?(Asl)(z, h, X; y, h’, X’). 

In the formalism of Ref. [z] the quark lines in Fig. 8 yield the following factors: 

upper: ~+Whlt A+ pi.-% (P) 

middle: ~-(P’)~+~,-~;~~-T~u-(P) (C.2) 

lower: w#)YY~t(P) 

Performing the spinor algebra leads to an expression for the color- and flavor-independent part of 
the amplitude 

N 
YF(A51)(z,q y,s,) = 0, (C.3) 

where 
N = -8s3c35’ 

1 
a(1 - yza’) t &,s* (721 + 6%) 1 

and 

7.7 = -sJc’s’zl+3~2~3[(yi, 21) + i*l[(yl, 23) t 4, t-1 

using notation defined in Appendix A and Eq. (B.2). A s in Table 3 this diagram contributes to all 

four combiitions of photon h&city. 
From Eqs. (3.3) and (3.7), the contribution of diagram A51 to the helicity amplitude is 

Mf:‘(s,tlA51) = (4~ .m)(4ras)a$ (~)‘l[d=~[dy~~(A”)(z,X; ~,X’)$(~‘~)(z,y). (C.6) 

where the coupling constants are the electromagnetic Q., and the strong 06, and 

+(A61’(z7y) = e$h(~)h(Y) t Vdh(z)h(Y) f Wdh3(~)b(Y) (C-7) 

incorporates the distribution amplitudes and the charge factors Z/A61’; the quark charges are 
e, = 2/3 and ed = -l/3. In arguments of functions z or y is an abbreviation for all three 
momentum fractions. The QCD-sum-rule distribution amplitudes are polynomials of the form 

tit% ZI,%) = 12%zm(bo + bm t bm + bnr: + b13z1z3 + b33z;). CC.81 

Consequently, #AsI) is given by 

$(“61)(r, y) = (12O)Z 1 cW4 (m,,msln,,nJ)z~*+‘zlz~+*y;~+*yly3n3+1, cc.91 
m*,m,,n,,n, 

in which the summation is limited by 

~1,~3,nl,nsEt0,1,2}, m+ms<2, n1tn312. (C.10) 

Below the obvious abbreviations m and n will be used in arguments. Clearly, if the distribution 
amplitude were extended to higher moments, these limits would change. 

Substituting Eq. (C.9) into Eq. (C.6) yields 

M$ (s,tlA51) = (4xa 

26 



where 

1(A51)(m, A; n, A’) = /[dz][dy] ~~‘+~.~.~‘+~y;L+~y~y3”“+~ p(A51)(z, A; y,X’). (C.12) 

Our strategy is to work out 1(“61)(m, X; n, X’) using analytical and numerical techniques. 
Let us concentrate on the X = X’ = fl amplitude: 

I(As.‘)(“‘, t; “, t) = -& /[dz][dy] 
N(=,Y) 

Ih +I) + is] [(YI, 53) t is]’ 
where 

N(z,y) = .~1+1.2.~y;1+1y3n’(l - y2s2). (C.14) 

Because the gluon with momentum ~1 and the quark with momentum 93 can go on shell, the 
integral in Eq. (C.13) has an imaginary part. Using Eq. (3.16) 

RercAsl)(m, tin, T) = & ~:WdylN(~,~)+--&&, (C.15) 

where P denotes the principal part, and 

hl(Asl)(m, f; n, t) = -A /[dz][dy] N(z, y) [“(f:.‘;;” + ‘y;;;E:;))] (C.16) 

The sir-dimensional integral in Eq. (C.15) can be reduced to a two-dimensional integral: 

' dy 'bn3 + l) - d%& % t 1) x 
1 - yal 

(C.17) 

which is carried out using the method (41 outlined in Appendix D. The functions 

f-i;(a) = jol dz g. (C.18) 

are special cases of the hypergeometric function. For Ial < 1 they can be implemented recursively: 

fw) = hl(l- a)/4 
n:(a) = dl~-l(a) + l/m, and 

n;(a) = (1 - a)rI-,---‘(a) - B(m + 1,n); 

for /al > 1 they can be implemented using the Gauss hypergeometric series [Zl]. 
The imaginary part can be reduced to a one-dimensional integral: 

Iml(AS1)(m, t;n, T) = -&s + Hl), 

where 

~~=Cz”‘~(m~+2,1)B(1,ns+1) dr 
I 0 1 

zw+“r+3.p,+n,+l 2 z 

(1 - Zd2)nl+nl+l 
I--.---- 

n3 + 2 1 - IS2 1 
Hz = -CZn’B(l,m~ t l)B(l,% + 1) I 0 1 

dz 
pt+n~+lZm3+n,+2 2 z 

- (l- zs~)“‘+“3+2 I 
1 nsi-I-&? 1 . 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

These integrals can be reduced to the hypergeometric function and evaluated numerically without 
resorting to Monte Carlo integration. 

Our results for Mii(A51) are tabulated in Table 5, using the CZ distribution amplitude [II]. 
The error estimates for the real part are those reported by VEGAS. 
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Table 5: The contribution of diagram A51 to the helicity amplitude MT!. The energy dependence 
has been factored out, but the factors preceding the integral in Eq. (C.6) have been included. We 
have set aA = 137.036, a:s = 0.3, and fN = 5.2 x 1Om3 GeV1. 

f3 10%” x Re(M:$A51)] 103s2 x Im[M$(A51)] 

200 -1.020(l) 0.180.. . 
300 -l.O84(lj 
400 -1.177(l) 
500 -1.307(l) 
60° -1.484(l) 
700 -1.716(l) 
80° -2.021(2) 
900 -2.412(2) 

1000 -2.890(2) 
1100 -3.448(3) 
1200 -3.944(4) 
1300 -3.912(5) 
1400 -1.550(11) 
1500 9.565(28) 

0.156.. . 
0.115.. . 
0.049.. . 

-0.055.. . 
-0.219.. . 
-0.482.. . 
-0.908.. . 
-1.614.. . 
-2.813.. . 
-4.911.. . 
-8.696.. . 

-15.675.. . 
-28.134.. . 

160’ 57.041(72) -42.216.. . 

D Monte Carlo Integration of Integrals Defined by Principal 
Part Prescription 

All principal part integrals encountered on this work take the form of Eq. (3.17). Considering the 
F integration, the pole appears at r$/(l - 7sz), i.e. parametrized by 7. Hence, it is enough to 
illustrate the folding method in one dimension, i.e. for integrals of the form: 

J 
1 

J= 
0 

dzP%, o<a<l, f(a)#o. 

The principal part prescription is defined by 

where 

Jl = 
I 

-*(+ f(+) 
1 

2-a’ 
J1 = &id, 

0 I a+* 2 --a 

In each integral we change variables: 

yl = z 3 51 = 
I 0 

l-C’adylJl(yl), &(y) = fo 
Y-1 

and 

a(1 - 2) l-e/o 

yz = 41 + (1 - 2o)r 
+ Js= 

J 0 
dyl&(yl), &(y) = c1 - a)f(a(l - ay)ld) 

41-y) ’ 

CD.11 

(D.3) 

(D.4) 

(D.5) 
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where d = a + (1 - 2a)y. The integration variables yl and ye satisfy 

dz dz 

&i yI=l 
=-- 

4s M=~ 
(D.6) 

and hence the upper limits in Eqs. (D.4) and (D.5) approach 1 uniformly, up to negligible terms of 
order cz in the upper limit of the latter. Combining Eqs. (D.Z), (D.4) and (0.5) yields an expression 
in which the limit L + 0 may be taken. The result, 

J= 
/ 0 ldy [WY) + &71(~)1, (D.7) 

contains no singularities, ad VEGAS [3] has no difficulty evaluating it. The remote danger that 
the randomnumber generator chooses the value y = 1, for which 31 and .72 are individually infmite, 
will be reported by the computer. 

This method can be extended to higher dimensional integrals and to cases where there is more 
than one pole in the integrand [4]. Reference [4] also discusses the need for a correction term 
f(a)lnl(l - a)/aI for changes of variable that do not satisfy Eq. (D.6). 

Reference [9] regulates polea by using the Feymum ic prescription in the computer program. 
The principal part in Eq. (3.16) is replaced by two large peaks of opposite sign, and the &function 
is replaced by a narrow Lorentcian. A stable result is sought for a sequence of small values of c, 
which controls the width of the peaks. In an example from pion Compton scattering that can be 
integrated axmlytica!Jy, the ie method, with e = 0.005, can be off by as much as 5% for the real 
part and 10% for the imaginary part, while the reported statistical errors are less by one tenth. 
(Our method agrees with the exact result, within the reported errors.) In the more complicated 
expressiona for nucleon Compton scattering, the discrepancies in the ic method are larger. We used 
it to (try to) compute the contribution of diagram A51 to the X = X’ = +l helicity amplitude (cf. 
Appendix C). Using over 75,000 function calls and 10 iterations, the imaginary part, aa a function 
of scattering angle, did not even resemble the correct result. 
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